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Many contact problems of the theory of elasticity (for example, contact 
problems for an elastic layer, and others) cau be reduced to integral 
equations of the type 

The parameter h eharacte~i~es the thickness of the layer, and so on 
(the properties of the kernel of the integral equation are given below). 
In the sequel, we consider several methods of solutions of this equation, 

each of which is suited for use on some intervaI of variation of h; com- 
bined, these methods cover the total interval over which h can vary. 
Namely, for large and for very small values of A the solutions of Equa- 

tion (0.1) are obtained in the form of simple sufficiently accurate 

formulas; for intermediate values of h, the solution of Equation (0.1) 

is reduced to the solution of an easily constructed system of Linear 

algebraic equations. 

In the nature of illustrative examples of our methods, we consider 

the effect of a stamp (die) on an elastic layer resting without friction 
on a solid base, and also on a layer which is rigidly connected with a 
nondeformable base. We note that the first one of these problems wss con- 

sidered in [I-?]. In contrast with those works, the methods presented 

here will make it possible to find, in a considerably simpler way. 

practical exact solutions of the aentioned problems for arbitrary values 

of A. The bounds of validity of each method are indicated, and necessary 

tables are given for the use of our methods. 

1. General fun of the solution of the integral epuatian, degenerate 
solution. We shall consider an integral equation of the type (0.1) and 
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Approximate solution of a certain type of integral equations 1411 

shall assume that its kernel has the following properties. 

1. For every k E (- m, m) 

R(k) = - In 1 k 1 + F (k) (F(k)ER; (-c, 4, a>‘& a>,i, c<=‘) (1.11 

where F(k) is an even function which can be represented as a power series 
with a radius of convergence ~(0 < p < m) 

ies the relation 

i=n 

2. When Ikt - m, the kernel satisf 

K(k) --, nAd (k) 

where 6(k) is Dirac’s delta-function. 

F (k) = jj aik2’ (Ikl<p) (1.2) 

(A = const) (1.3) 

In what follows, we shall assume also that 

f(xEHpa(-W, a>% P>I 

where Hna(- P, P) denotes the space of functions whose nth derivatives 

satisfy Hoelder’s condition with index a when - p < x < p. 

Let us determine the general form of the solution of the integral 

equation. Making use of Formula (1. l), we may express Equation (0.1) in 
the form 

{ q(E)F(y)dt, lxl<l (1.4) 
-1 -1 

We shall look for a solution q(t) of Equation (1.4) in the class 

L(- 1, 1) of functions which have summable absolute values. In this case 

9 (2) = f (2) - +- \ T(~)F(~+) dE E Hra (-- l,i) (a > 0, r = lnf (P, q)) (1.5) 
--I 

If the function y(x) is assumed to be known for the time being, then 
Equation (1.4) will take on the form 

1 

s X-El - ‘P (8 ln ‘7 dE = “9 (4, lxldl 
-1 

(1.6) 

Its solution in the class L(- 1, 1) has the form [d 
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(1.7) 

fi.8) 

Substituting V(X) from (1.5) into Formulas (1.7). and (1.8), we obtain 

q(x)= L_- 
XJfl-as 

_i:- & i q(E) dE j F’ (t+) ‘Ed” ] (i.(J) 
-1 -1 

1 
P--a (i.10) 

We have thus reduced the integral Equation (0.1) of the first kind to 
an integral equation of the second kind (1.9) under the condition (1.10). 

For what follows, we need to establish some properties of the integral 

(i,lll 

that are related to the properties of the function y(t). The following 
theorem is valid. 

Theorem. bet 

Then the function 

On the basis of this formula and from Formulas (1.5), (1.7) and (1.8) 
one can easily conclude that a solution of Equation (0.1) in the class 
L(- 1, 1) must, for every h E (0, m), have the form 

If in (1.5) the value of a. > l/2, then one 
that the solutions of (0.1) which are bounded 
have the form 

I). r = Irtf (p, (;)I (fLt2) 

can show, in the same way, 
for x = 1 (X = - 1) must 
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(analogously, if the solution is bounded at x = - 1) 

(F(“)==y-I-xx”aQ(t) (cn, (-c) E c,_, (- 1,1)) (1.14) 

Here, we impose on f(x) either one, or two bounds, respectively. 

Let us now find the degenerate (limiting) solution of Equation (0. f) 
for either very large or very small values of A. For large values of 
the parameter A, one may set F( [ t - <]/A) = F(O), F’( [ t - @hi) = 0. From 
Formulas (1.9) and (1.10) we now obtain 

1 

f-f(“)’ I 1 * 

,? p-2 [ I ? f’(1)1/1 dt p- -t--x 1 ’ “‘In21,+-F(O) s 
-1 -1 

The bounded solutions, and the corresponding conditions 
r , 

imposed 
the function f(x), can be obtained quite easily t6J from the first 
formula of (1.15). For very small values of the parameter h Equation 
can be expressed, in accordance with Formula (1.3), in the form 

f (0 dt 
-=ZLIZYX 

1/1-c 

-1 

The solution of Equation (1.16) can be found without difficulty* 

i (4 
‘p (xl = =li. ( / 1’ 1 .<< 1) 

(1.15) 

on 

(0.1) 

(1.16) 

(1.17) 

In case A is small, the bounded solutions correspond to the solutions 
which vanish when I = 1 (X = - 1) and x = k 1. The conditions imposed on 
f(x) in this case are, obviously, of the form 

f(l) =o (f f- 11 = (3, f(t 1) =o (1.18) 

A comparison of (1.17) and (1.12) reveals that the solution (1.17) 

t A more exact solution of Equation (0.1) for small values of h can be 
obtained by the method of successive approximations f9], whereby the 
zeroth approximation will be the solution (1.17). However, in practice 
this method leads to the difficulties of numerical integration at 
each stage of the successive approximations, and to the accumulation 
of errors. 
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will yield, obviously, true results when 1 XI < 1 - E(A) where e(A) > 0 
and tends to zero as A - 0. 

In conclusion of this section, we note the important case when f(x) = 
~1 + vx in Equation (0.1). The essential point here is, that it is, 
frequently, sufficient to determine only the quantities 

in place of the solution of Equation (0.1) itself. 

These quantities can be determined for an arbitrary function f(x) if 

the solution (or its approximation) of Equation (0.1). (p(x) = clrp,(x) + 

Vcpv(X), for the function f(x) = CI + vx is known. Indeed, making use of a 
method of Mossakovskii [IO] we can obtain 

1 

M = f (x) cpv (.z) dx (1.20) 

2. Solution for large values of the parameter A. Making use of Formula 

(1.12), we express Equation (1.9) in the form 

Considering the quantity P as having been given, we can determine 

a(x) by means of Formula (2. l), and after that find cp(x) and P with the 

aid of Formulas (1.12) and (1.10). 

Treating the right-hand side of Equation (2.1) as an operator which 

maps the elements of the space C(- 1, 1) into elements of the same space. 

and making use of Banach’s “fixed point principle” we can show that the 
unique solution of Equation (2.1) can be obtained by the method of 

successive approximations for sufficiently large values of the parameter 
A, namely, when 

(2.2) 

At the same time, for sufficiently large values of A (when A > Z/p), 
we can rewrite (2.1) on the basis of Formula (1.2) in the more useful 

form 
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@(z)=w(x)-+~ + 1 (D(E)Li($, x)dS (2.3) 
ix1 -1 

aP(r)=+- P- L \ 2 f’ (f) l/lI=Fddt 

21 
t-x I 

(2.4) 

The solution of Equation (2.3), obviously, can be found by the method 
of successive approximations when 

For the initial approximation it is convenient to take @o(x); it is 
easy to see that the nth approximation will have the form 

(3.6) 

The solution of Equation (2.3) can be obtained also in a different 

way, which is as follows. We look for a solution in the form 

Snbstituting Expression (2.7) into Eauation 
coefficients of like powers of Av2. we obtain 

(2.7) 

(2.3). and eauating the 

-1 

1 
C2.8) 

Determining successively @e(x) , (o,( r>, and Q,(x) we obtain the solu- 
tion of (2.3) with an accuracy up to the term of order hs6. After this 
we obtain with the aid of Formula (1.12) the function 
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x [ 2aa (6x3 - 6x% + 2x@ - 2z + 3t) + 2a14 nit + 0 ($) (2.91 

Now, on the basis of (I.10) and with the aid of (1.2) and (2.9). we 
determine the quantity 

P= In2h+ao++-$*+ [ tg+ 0 (+,l’[J p& 

--Gil 1/i>f(t)t (al+?$+.$)dt]+ O(k) (2.f0) 

The bounded solutions and the corresponding conditions imposed on the 
function f(x). can easijy be obtained t51 from Formula (2.9). 

The second method of solving Equation (2.3) can, obviously. always be 
used when (1.2) is valid, i.e. when h > 2/p. The connection between the 
first and second method of solution consists of the following: 

because of the uniqueness of the solution under the specified values of 
the parameter h, and the uniqueness of the representation of O,(z) in the 
form (2.7). 

It is not difficult to show that for any n, the series (2.6) is 

absolutely convergent when h > 2/p. It is obvious that the series (2.7), 
which is a solution of (2.3). will then converge absolutely for h > h+. 

3. Approximate solution for arbitrrry valuee of the Parameter A. Let 
the parameter h be kept fixed, and let the function F(k) be approximated 
in 0 B f k/ d 2/A by means of a polynomial in some way (for example, by 
interpolation) 

(3.1) 

Substituting Expression (3. I) into (1.4), we derive the following 
equation 

1 

c IX-:] - iP(E h ----=-dt .= zffx) - cp m (x - ET’di (3.2) 

-Ll r=o -1 

We shall look for a solution of Squation (3.2) in the form 
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i-l i-l 

v (5) = ‘Fo (5, -!- $3 (EL ‘FI (5, = 1_ ( y -.1,s+2 i2J+? + 2 ‘3,,+, E2”” 
i 1-c dz_l 

1 (3.3) 

S=O 

The function qo(c) is determined by means of the Formulas (1.15); the 

constants A2 s+2 and AZ,+ 1 are to be determined. 

Substituting p(i) from (3.3) into x3.2), and evaluating the integrals, 

we obtain the following relations: 

i-l 

2 
SZ__l 

i b 
W + I’ !! [In 2i. -(- (1” - : (2s + 3)] + P”dL., (x) + 2 _L 
(‘)s+ 2) !! - 

r=l ?L” 

i-1 

p ‘%C1 

i b i 11 
2 -, Qwl (s) - 2 G Q;;” _ (4) = 2 -$ Q"(z) (3.3j 

s=o r=1 A- r=1 ” 

Here 

z?d-2n+2 

(2n - I)!! z2d--2n+1 

L 2n!!(2s--n-/-l) 
n=o 

cm+2 (2m + 2s + 3)!! z2r--?m-2 
2r 

m= -1 
(h $2s $ 4)!! 

Q;;” (=) = ‘il C;y+l(21n + 2s + I)!! 

VlI=O 
(2m + 2s f 2)!! z2'-2m-' 

r-1 

T(i) I)"+' 1 1 f(t)dt = 0, 7 (2s -!- 3) = -+y_ 2 
p 

, PO = c 

p-1 
x (In ‘li. T ao) -11 v/’ 

(3.6) 

P 
1 (2m A- I)!! 

2frlf? = x (in 21, + 27 (2n~ f Z)!! s 

l f(t)dt , 
_-l JG=T 
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- tzm-*q+l r/ 1 - t* f’ (t) dt 

M l 5 (2F-$)!! 5 - -- 
m-t-i - ?I t2m--q v’ 1 - t” I’ (t) dt 

q=o -1 

Equating the coefficients of equai powers of x in the relation 13.4), 

we obtain i + 1 equations for the determination of the i + 1 quantities 
A2s+2. In an analogous manner we obtain from the relation (3.5) i equa- 
tions for the determination of the i quantities A2s+l. Having solved the 
indicated systems of linear algebraic equations, we obtain the approxi- 
mate solution of Equation (1.4) by means of Formulas (3.3) and (1.15). 
After the general solution has been found. it is easy to find the bounded 
solutions and the corresponding conditions imposed on the function f(x). 

It is obvious that for the finding of the approximate solution of 

equal accuracy, it is necessary to increase i with any decrease of 7. 
Hence, for very small A it is advisable to use the degenerate solution 
(1.17). The convergence of the obtained approximate solutions, when i -. a, 

to the exact solution follows directly from the estimate (2.10) which was 
given in the work [2]. 

We note, also, that if F(k) is continuous and differentiable any 
number of times in the interval - m < k < m, then the approximate solu- 
tions retain all the properties of the exact solution. 

4. Examples, Let us consider the problem of the effect of a rigid* 

stamp Ldiel on an elastic layer (a) lying frictionless on a solid base, 
(6) rigidly attached to a solid base. There exist no frictional forces 
between the stamp and layer. 

By the methods of the operational calculus, the problems (a) and (6) 
can be reduced to the solution of integral equations, which in dimension- 
less coordinates have the form (0.1); the function rp({) is now the un- 
known pressure between the stamp and the layer along the line of Contact 

l The solution for the problem of an elastic stamp can also be obtained 
quite easily under the usual hypotheses that apply in that case. 
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Here, h is the thickness of the layer; a is the half-length of the 

line of contact: 6(x) is the depression of the boundary of the layer 
under the stamp, x’ and c’ are dimensional variables. 

The kernels of the integral equations can be expressed in the follor- 

ing form: 

(4.1) cos h-u du 

00 
. 

lb) 

[ 2 (3 - 43)*iah2u - 4U ] 
K w = \ u [2 (3 - 4b)coshPU + (3 - 4c)2 + 1 _1- 4u2] cos k” du (4.2) 

0 

It can be shown that the kernels (4.1) and (4.2) satisfy all the re- 
quirements mentioned in Section 1; the functions F(k) which correspond 
to these kernels will be continuous and differentiable any number of 
times when - CO < k < m, while the radius of convergence p = 2. It is easy 
to show that maxIF”(k)I = 2al. maxlF’(k)l = 2B. 

TABLE 1. 

Gl) -0.352 0.521 
0.1 -0.396 0.603 
0 .2 -0.442 0.647 

(b) 0.:; -0.527 0.716 
0.4 -0.683 0.828 

-0.135 0.0346 0.584 
-0.190 0.0592 0.62i 
-0.212 0.0676 0.646 
-0.245 0.0801 0.688 
-0 298 I 0.0998. 0.766 

- 

- 
A 

0.500 
0.494 
0.469 
0.408 
0.278 

5.5 2.4 

7.5 3.2 

::: 

:*: 
1:9 

).a 

l/5 
Ii5 
114.5 
117 
l!lO 

The values of the quantity B and of all the other quantities needed 
for the derivation of the degenerate solutions (1.15), (1.17). and of 
the solutions (2.9) and (2.10) are given in Table 1. The degenerate solu- 
tions for very large A should be used when A > A,; the degenerate solu- 
tions for very small A should be used when A < A,; the solutions for 
large A should be used when h > ho. Within these boundaries, the obtained 
approximate solutions can be considered as being exact for all practical 
purposes. 

5. Exrqles (continuation). The approximate solutions of the problems 
(a) and (b) for ho > A > he can be obtained by the method presented in 
Section 3. The values of F(k) required for the application of this method 
have been computed on the computing machine “Ural” and are given in 
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Tables 2 and 3 for the pmbhas {a) and (bf, respeotively. The tables 
are constructed in such a manner that the intermediate values of the 
function F(k) can be obtained by linear interpolation, correct to three 
decimal places. 

k F GV k F fkt 

0.00 
0.05 
0.10 
0.%5 
0.20 
0.25 
0.30 

i:i 

0:50 
0.55 
0.60 
0.65 
0.70 

-0.352 
-0.350 
-0.346 
-0.340 
-0.331 
-0.320 
-0.306 
-0.290 
-0.272 
-0.252 
-0.229 
-0.206 
-0.180 
-0.153 
-0.125 

0.75 
0.80 
0.85 
0.90 
0.95 

:*: 
1:t0 
1.15 
1.20 
1.25 
1.30 
1.35 
1.wf 
1.45 

-0.096 
-0.066 
-0.035 
-0.003 
0.029 
0.062 
0.095 
0.128 
0.162 
0.195 
0.228 
0.261 
0.293 
0.326 
0.358 

k 

1.50 
1.55 

:*g 
1:70 
1.75 

::zz 

1’:Z 

i:$ 

2:25 
2.20 

0.389 
0.420 
0.459 
0.481 
0.510 
0;540 
0.568 
0.596 
0.623 
0.650 
0.676 
O-702 
0.727 
0.751 
0.775 

F (k) k 

0.798 
0.821 
0.844 

x:z: 

ES 
ok9 
0.968 
0.988 

:z; 
1:043 
I.061 
4 -079 

Eli 
3:10 
3A5 
3.20 
3.25 
3.30 
3.35 
3.40 

The computations shoe that in order to obtain sufficiently exact solu- 
tions for practical purposes, one must select the quantity i in Formula 
(3. I), in case of equal subdiy~~~ons of interpolation, in accordauce 
Hth the relation 

The function lP(x) is equal to the integer nearest to X, Let us con- 

sider, for example, the solution of the problems (a) and (b) for the 
case when A = 1, 6(r) = 6 + a(x) where we choose i = 3 in accordance with 
(5.1) (in the given example for the finding of the approximation (3.1) 
use was made of the roots of the Chebychev pofynomiaIs !f7( kt2) for the 
points of interpolation on the interval to, 21; a choice of equal sub- 
divisions would have given a less exact result). 

(54 + 43: (1.788 -0.6496 + 0.1Q4z4) 1 
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an 

(6) q (z) = r& [$ (2.334 - 1.400x2 f 0.4572” - 0.17W) _t 

_t xx (2.163 - 1.123.G -+ 0.3SW) 1 (5 = 0.3) (5.3) 

One can easily prove that the solution (5.2) agrees quite well with 
analogous solution obtained in the works [l-4,61. 

Computations made by the author showed that in the case of problem (b) 
for equal depressions 6(x) and for arbitrary h. the pressure cp(r) in- 
creases with an increase of o. Furthermore, it was shown that the pres- 

sure under the stamp, in case of problem (b), is greater than in the 
problem (a) under otherwise equal conditions and for arbitrary A. This 

TABLE 3. 

k / F(k) / k j F(k) / k / F(k) / k 1 F(k) j k / F(k) 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 

-0.393 
-0.394 
-0.389 
-0.382 
-0.371 
-0.358 
-0.342 
-0.324 
-0.303 
-0 * 280 
-0.255 
-0.229 
-0.200 
-0.170 
-0.139 

-0.441 
-0.440 
-0.435 
-0.427 
-0.416 

~ZF 4 
-0:363 
-0.343 
-0.318 
-0. “92 
-0.263 
-0. I?.33 

0.75 
0.80 
0.85 

::g 

:+?z 
1:10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 

-0.107 
-0.074 
-0.040 

-;*zz 
0:064 
0.098 
0.133 
0.168 
0,203 
0.237 
0,271 
0.304 
0.337 
0.370 

1.50 
1.55 
1.60 
1.65 
1.70 
1.75 
1.80 
1.85 
1.90 
1.95 

;*z! 
2:10 
2.15 
2.20 

z0.i 

0.401 
0.433 
0.463 
0.493 
0.523 
0.551 
0.579 
0.607 
0.634 
0.660 
0.686 
0.711 
0.735 
0.759 
0.782 

s = 0.2 

3.65 -0.201 L.30 0.262 
3.70 -0.168 1.35 0.296 
3.75 -0.134 1.40 0.330 
3.80 -0.099 1.45 0.364 
3.85 -0.063 1.50 0.396 
3.90 -0.027 1.55 0.428 
I.95 0.009 i.60 0.460 
I.60 0.046 !. 63 0.490 
L.05 0.082 ..iO 0.520 
1.10 0.119 .,. 75 0.550 
I .I5 0.155 .80 0.578 
I.2U 0.191 ..85 0,606 
L.25 0.227 .QO 0.633 

%:Z 
%:Z 
g-2 
2:55 
2.6C 
2.65 
2.70 
2.75 
2.80 
2.85 
2.90 
2.95 

1.95 

I*; 
2:10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 

Ei 
oh350 
0.871 
0.892 
0.913 
0.933 
0.952 
0.972 
0.991 
1.009 
1.028 
1.045 
1.063 
1.080 

0.660 
0.686 
0.711 
0.736 
0.760 
0.783 
0.806 
0.829 
0.851 
0.872 
0.893 
0.914 
0.934 

3.00 
3.05 
3.10 
3.15 

;*;; 
3:30 
3.35 
3.42 

Z:$ 

2.60 
2.65 
2.70 
2.75 
2.80 
2.85 

f :Z 
3.00 

1.097 
1.124 
1.130 
1.146 
1.162 
1 .I78 
1 .I93 
1.208 
1.223 
1.238 
1.252 

f;zor: 
on as 
In k 

0.954 
0.973 
0.992 
1.010 
1.028 
1.046 
1.064 
t ,081 
1.098 

E8m 
on as 
In k 
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d = 0.3 

2.00 
2.05 
2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 

;:; 

i*z 
2:75 

Zi 

EZ 

0.678 
0.704 
0.729 
0.754 
0.778 
0.801 
0.824 
0.846 

EE 
0:9fo 
0.930 
0.950 
0.970 
0.989 
1.007 
1.026 
i .044 
1.061 
1.079 

3.00 
3.05 
3.10 
3.15 
3.20 
3.25 
3.30 
3.35 
3.40 
3.45 
3.50 
3.55 

Ez 
3170 
3.75 
3.80 
3.85 

;:ii 

I .096 
1.112 
2 .I29 
1.145 
z .I61 
1 .I77 
2.192 
1.207 
1.222 
1.237 
1.251 
1.265 
1.280 
1.293 
1.307 
1.320 
1.334 
f.347 

::EZ 

4.00 
4.05 
4.10 
4.15 
4.20 
4.25 

E! 
4140 
4.45 
4.50 
4.55 

E 
4170 
4.75 

1 .::55 
1 .38 
1.4fO 
2.422 
1.434 
1.446 
1.458 
,I .4f9 
1 .Ml 
,I . 492 
1 .503 
1.514 
1.526 
1.536 
1.547 
1.558 
From 
here 
on a8 
In k 

1.566 
1.576 
1.586 
1.597 
1.791 
1.799 
1.807 
1.816 
I.824 

Ei YE;; 
0.10 -0.520 
0.15 -0.511 
0.20 -0.498 
0.25 -0.483 

8:: -0.464 -0.442 
0.40 -0.418 
0.45 -0.391 
EZ -0.362 

-_(I.330 

21:Z -0.297 -0.263 
0.70 -0.226 
0.75 -0.i89 
0.80 -0.151 
0.85 -0.113 
0.90 -0.074 
0.95 -0.034 

OOE 

0:10 

-0.681 -0.683 

-0.675 
0.15 -0.664 

8% -0.650 -0.632 

8-E 
-0.6$1 

0:40 -0.586 -0.558 

1.00 0.005 
1.05 0.045 
1.10 0.084 
1.15 0.123 
1.20 0.161 
1.25 
1.30 E%i 
1.35 01273 
1.40 0.308 

1.45 1.50 Et 
i.55 
I.Ml 

cp$ 

1.65 01476 
1.70 0.507 
1.75 0.538 
1.80 0.567 
1.85 0.596 
1.90 0.624 
1.95 0.651 

3.45 -0.527 

E 
GO 

z;*g 
-0:419 

:.z -0.380 

3:75 z,D*gj 

::ii 
-0:2!B 
-0.210 

0.828 
0.851 
0.873 
1.244 
1,259 
1.273 
1.287 
1.301 
1.555 

-0.166 
-0.121 
-5.077 
-0.033 

OJMO 
0.053 

8*E 
0:%05 

E F W k I I k - k I F w k I I F (W 
- 

:*K 
1:627 
I.%31 
I.646 
1.m 

::$t 

::tE 

:*z 
1:72l 

i:g 

i:g 

1:782 
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difference, however, does not exceed 10% when 0 < u < 0.2. 

In conclusion, we note that with slight modification all the methods 
given here can be applied to the solution of contact problems for elastic 
layers (not necessarily axisymmetric). 

The author thanks 1.1. Vorovich for proposing the problem and for 
directing the work, and also N. V. Kovalenko and V.G. Shepeleva for con- 
structing the Tables 2 and 3. 
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