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Many contact problems of the theory of elasticity (for example, contact
problems for an elastic layer, and others) can be reduced to integral
equations of the type

i
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The parameter A characterizes the thickness of the layer, and so on
(the properties of the kernel of the integral equation are given below).
In the seqguel, we consider several methods of solutions of this equation,
each of which is suited for use on some interval of variation of A; com-
bined, these methods cover the total interval over which A can vary.
Namely, for large and for very small values of A the solutions of Equa-
tion (0.1) are obtained in the form of simple sufficiently accurate
formulas; for intermediate values of A, the solution of Egquation (0.1)
is reduced to the solution of an easily constructed system of linear
algebraic equations.

In the nature of illustrative examples of our methods, we consider
the effect of a stamp (die) on an elastic layer resting without friction
on & solid base, and also on a layer which is rigidly conpected with a
nonde formable base, We note that the first one of these problems was con-
sidered in [1-7]. In contrast with those works, the methods presented
here will make it possible to find, in a considerably simpler way,
practical exact solutions of the mentioned problems for arbitrary values
of A. The bounds of validity of each method are indicated, and necessary
tables are given for the use of our methods.

1. General form of the solution of the integral equation, degenerate
solution. We shall consider an integral equation of the type (0.1) and
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shal]l assume that its kernel has the following properties.

1. For every k € (- ®©, ®)
K(ky=—1In|k|+ F (k) (F(kyEH; (—c,0), a>0, ¢>1, clo) (1.1)

where F(k) is an even function which can be represented as a power series
with a radius of convergence p(0 p < @)

e ]

Fly=3 af  (1k1<p) (1.2)

i=0

2. When |k| - ®, the kernel satisfies the relation
K (k) — n A8 (k) (A = const) 1.3)

where 8§(k) is Dirac’s delta-function.

In what follows, we shall assume also that
f(x)era(_iri)» d>0, P>1

where Hnu(- B, B) denotes the space of functions whose nth derivatives
satisfy Hoelder’s condition with index « when - B < z < P.

Let us determine the general form of the solution of the integral
equation. Making use of Formula (1.1), we may express Equation (0.1) in
the form

1

1
—fewm Tt gy {owrEF)a 1mi<t aw

—1 —1

We shall look for a solution ¢(§) of Equation (1.4) in the class
L(- 1, 1) of functions which have summable absolute values. In this case

1
1
vo=1@—= | 0@ F (S e B 1) @>0 =T, g) (5)

—1

If the function y(x) is assumed to be known for the time being, then
Equation (1.4) will take on the form

: —
SQ()lnl

—1

dE=ap(z),  |z|<1 (1.6)

Its solution in the class L(- 1, 1) has the form [8]
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Substituting y(x) from (1.5) into Formulas (1.7), and (1.8), we obtain

1

C r VITE
: : —E\Vi—d
Papyema | (S 2R 0y
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We have thus reduced the integral Egquation (0.1) of the first kind to
an integral equation of the second kind (1.9) under the condition (1.10).

For what follows, we need to establish some properties of the integral

1 Fa——
1(,1:)__:;\'!3_};}./..%;_‘_,1: (tt“

—t

that are related to the properties of the function y(t). The following
theorem is valid,

Theorem. Let
TOEH (—1,1)  (22>0)
Then the function
TEyeC, (—1.1)

On the basis of this formula and from Formulas (1.5), (1.7) and (1.8)
one can easily conclude that a solution of Equation (0.1) in the class
L(~ 1, 1) must, for every A & (0, ®), have the form

& {x
¢ (x) = Vi% (@ e, (— 1.0, r=1Inl(p, ) (142)

1f in (1.5) the value of o > 1/2, then one can show, in the same way,
that the solutions of (0.1) which are bounded for x = 1 (x = — 1) must
have the form
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Qlx)= ]/.__. @, (z), (e, (—11) (1.13)
(analogously, if the solutiom is bounded at x = - 1)
@) =VIi—22 D, (2) (D (x) EC,_y (—1, 1) (1.14)

Here, we impose on f(x) either one, or two bounds, respectively.

Let us now find the degenerate (limiting) solution of Equation (0.1)
for either very large or very small values of A. For large values of
the parameter A, one may set Fcle - §}/A) = Feoy, F'¢lt - E]/l) = 0. From
Formulas (1.9) and (1.10) we now obtain

“”*zyi_r (1.15)

lf(t)Vi—:— ! Cfyd
[ § dﬂ, P=1nﬁw+FﬂD§!Vfii§

The bounded solutions, and the corresponding conditions imposed on
the function f(z), can be obtained quite easily [8] from the first
formula of (1.15). For very small values of the parameter A Equation (0.1)
can be expressed, in accordance with Formula (1.3), in the form

1
Agwméfj

-1

Nez=/@ (el (1.16)

The solution of Equation {1.16) can be found without difficulty*

9@ =12 (z1<1) (1.17)

In case A is small, the bounded solutions correspond to the solutions

which vanish when z = 1 (x = - 1) and x = + 1, The conditions imposed on
f(x) in this case are, obviously, of the form

=0 (F(=1H=0) fl=1)=0 {1.18)

A comparison of (1.17) and (1.12) reveals that the solution (1.17)

* A more exact solution of Equation (0.1) for small values of A can be
obtained by the method of successive approximations [9}, whereby the
zeroth approximation will be the solution (1.17). However, in practice
this method leads to the difficulties of numerical integration at
each stage of the successive approximations, and to the accumulation
of errors.
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will yield, obviously, true results when |xz| <{1 — e(A) where g(A) > 0
and tends to zero as A ~ 0,

In conclusion of this section, we note the important case when f(x) =
# + vx in Equation (0.1). The essential point here is, that it is,
frequently, sufficient to determine only the quantities

1 1

P K P (3)ds, M- \ Ep(5)dg (1.19)
-1 —~—1

in place of the solution of Equation (0.1) itself.

These quantities can be determined for an arbitrary function f(x) if
the solution (or its approximation) of Equation (0.1), @(z) = uwu(x) +
vo,(x), for the function f(x) = + vx is known. Indeed, making use of a
method of Mossakovskii [10] we can obtain

1

1
r={imoma  u={imewe (1.20)
-1 —1

2. Solution for large values of the parameter A. Making use of Formula
(1.12), we express Equation (1.9) in the form

1 1 1
1 A0 2T 1 ¢ - Vi—2£d
vi=g|r=| P a]ep F(5) v

O -1 ~1
(2.1)

Considering the quantity P as having been given, we can determine
®(x) by means of Formula (2.1), and after that find ¢(x) and P with the
aid of Formulas (1.12) and (1.10).

Treating the right-hand side of Equation (2.1) as an operator which
maps the elements of the space C(— 1, 1) into elements of the same space,
and making use of Banach’s "fixed point principle" we can show that the
unigue solution of Equation (2.1) can be obtained by the method of
successive approximations for sufficiently large values of the parameter
A, namely, when

max | F" |
—max | F'| -+ V(max}F’ [Y* + 2max | F7|

At the same time, for sufficiently large values of A (when A > 2/p),
we can rewrite (2.1) on the basis of Formula (1.2) in the more useful
form

a

A

(2.2)
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o@=0 0= | 0O LG 9 3
i=1 -1
1
t 1—t
e [r- LT
(2.4)
2a

dt

L, (C: T} =

J

g — i VI=F
Joe—aVi=g

The solution of Equation (2.3), obviously, can be found by the method
of successive approximations when

> e ¥ =su 2 max| 7|
> T p] " —max|F' |+ V (max| F§)~~X-2m3\]1"”i

(2.5)

For the initial approximation it is convenient to take 0% %) ; it is
easy to see that the nth approximation will have the form

O" (z) = 2 o) (x)_., (2.6)
k=n
The solution of Equation (2.3) can be obtained also in a different
way, which is as follows. We look for a solution in the form

© @)= 3 Oy (2) +- @7
k=0 A

Substituting Expression (2.7) into Equation (2.3), and equating the
coefficients of like powers of A“z, we obtain

1
o (2) = ° (), %= oLt ma

-1

L (2.8)

Oue) = \ (@0 (@) Lo (&, 2) + By (3) Lu (8, 2)] d

+

Determining successively ¢ (2}, 9,(2), and Q {x) we obtain the solu~
tion of (2.3) with an accuracy yp to the term of order A~5, After this
we obtain with the aid of Formula (1 12) the function
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X {285 (6% — 822 - 2212 — 2x 4 31) + 2a12x}} dt 40 (%) (2.9

Now, on the basis of (1.10) and with the aid of (1.2) and (2.9), we
determine the quantity

p:[lnzx.l,.aw;; 4x4+1§§+0(x4)]ﬂ1[§ ‘;(t)dt _

1—1¢
-1

VViTEro (s 455 ae] + 0 (5) (2.10)

!./hﬂ

L
s

The bounded solutions and the corresponding conditions imposed on the
function f(x), cap easily be obtained (5] from Formula (2.9).

The second method of solving Equation (2.3) can, obviously, always be
used when (1.2) is valid, i.e. when A > 2/p. The connection between the
first and second method of solution consists of the following:

D, (2) > Dy (z)  when n— o0, A>AF 2.11)

because of the uniqueness of the solution under the specified values of
the parameter A, and the uniqueness of the representation of ®(x) in the
form (2.7).

It is not difficult to show that for any n, the series (2.6) is
absolutely convergent whem A > 2/p. It is obvious that the series (2.7),
which is a solution of (2.3), will then converge absolutely for A > A*,

3. Approximate solution for arbitrary values of the parameter A. Let
the parameter A be kept fixed, and let the function F(k) be approximated
in 0 <;§k] < 2/A by means of a polynomial in some way (for example, by
interpolation)

i
Fk)=ao+ 2 bk (3.1)
re=3
Substituting Expression (3.1) into (1.4), we derive the following
equation

-

o B i br :
—Newn @3 Sf”s) C—BTE G2

21 r=0

-

We shall look for a solution of Equation (3.2) in the form
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i—1
1 »
PO 0O 0@, R =g (D et +2 1,0, 571) (33)

—
o s=0

s=—1

The function q90(§) is determined by means of the Formulas (1.15); the
constants Ay ., and 4, ., are to be determined.

Substituting ¢(§) from (3.3) into (3.2), and evaluating the integrals,
we obtain the following relations:

i—1

Qs - 1) . 5
§=~—1
L b
— X P (34
o B
i—1 i i b
S Ay (Quea 0= 2 qptt@) =Y L e (3.3)
=0 r=1 r=1 a
Here
P - 2n — 1) 2s—2n-+2
2642 (%) E@ Al (s —2n 1 2)
8
N (2n — 1! 28—2n+1
Qus 41 (M= L 271!!(28—271—'~-1)z (3.6)
n=0 '
r—1
P () o v sz+2 (2m + 25 4 3! _or—om—2
or @ 25 + &)1
m=_1 (2m + 25 +
08t Q' poma1 2m 4 25 = D! ormom—y
G @ =2 oy @mEas o
m=0
r—1 r—1
2 Com+" 0m+2 zzr-—em—z’ 2 C°m+1 M7m+1 22r—em—1
m=—1 m=0
2852 4 yp+1 :
1(1)=0, T(2s+3)=2§-——2——, °="t(ln"’1'l—'-a) x f(_tld—to
p=1 ST ) Vi=e
1
p . 1 _(Zm—l—i\” f@de
gm+2 7 x(ln 2 -+ 25) (2m 4+ ) Vi—e -
=1
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1 (’q—i)
T T 2qT

q=0

1
St2m‘4¢+1)f1 7 de

- 1)1 _ ,
2m+1 ' 2 qzq” S 2m—2q ]/1 — () dt
1

Equating the coefficients of equal powers of x in the relation {3.4),
we obtain i + 1 equations for the determination of the ¢ + 1 quantities
Ay c49- In an analogous manner we obtain from the relation (3.5) i equa-
tions for the determination of the i quantities 4, ,,. Having solved the
indicated systems of linear algebraic equations, we obtain the approxi-
mate solution of Equation (1.4) by means of Formulas (3.3) and (1.15),
After the general solution has been found, it is easy to find the bounded
solutions and the corresponding conditions imposed on the function f(x).

It is obvious that for the finding of the approximate solution of
equal accuracy, it is necessary to increase i with any decrease of 7.
Hence, for very small A it is advisable to use the degenerate solution
(1.17). The convergence of the obtained approximate solutions, when i~—®,
to the exact solution follows directly from the estimate (2.10) which was
given in the work [2].

We note, also, that if F(k) is continuous and differentiable any
number of times in the interval — ® < k < ®, then the approximate solu-
tions retain all the properties of the exact solution.

4. Examples, Let us consider the problem of the effect of a rigid*
stamp ldie] on an elastic layer (a) lying frictionless on a solid base,
(b) rigidly attached to a solid base. There exist no frictional forces
between the stamp and layer.

By the methods of the operational calculus, the problems (a) and (b)
can be reduced to the solution of integral equations, which in dimension-
less coordinates have the form (0.1); the function ¢(£) is now the un-
known pressure between the stamp and the layer along the line of contact

A
f{x) = - 8 {2

v

Paky

x
Te= e 8=

=

* The solution for the problem of an elastic stamp can also be obtained
quite easily under the usual hypotheses that apply in that case.



Approximate solution of a certain type of integral equations 1419

Here, h is the thickness of the layer; o is the half-length of the
line of contact; &(x) is the depression of the boundary of the layer
under the stamp, x' and §' are dimensional variables.

The kernels of the integral equations can be expressed in the follow-
ing form:
o0
cosh2u — 1

@ K= S u (sinh2u + 2u)
°

cos ku du (4.1)

v (2 (3 — &3)sinn2u — 4u]
(b) K (k) = S 22— hoeomdu + (3 —dop + 1 &uf]
0

cos kudu (4.2)

It can be shown that the kernels (4.1) and (4.2) satisfy all the re-
quirements mentioned in Section 1; the functions F(k) which correspond
to these kernels will be continuous and differentiable any number of
times when — @ < k < ®, while the radius of convergence p = 2. It is easy
to show that max|F" (k)| = 2a;, max|F'(k)| = 2B.

TABLE 1.
o g a, as as B A Ao A° A 2o
(a) —0.352 |0.521 | —0.135 | 0.0346 | 0.584 | 0.500 | 5.5 | 2.4 (1.5 (1,5
0.1 ] —0.396 [0.603| —0.190 | 0.0592 | 0.621 | 0.494 | 6 2.5{1.61/5
0.2 | —0.442 |0.647 —0.212 | 0.0676 | 0.646 | 0.469 | 6 2.6 |11.711/4.5
(b)| 0.3 | —0.527 |0.716 | —0.245 | 0.0801 0.688 | 0.408 | 6.5 | 2.8]|1.8 [1/7
0.4 —0.683 {0.828 —0.298 | 0.0998. | 0.760 [ 0.278 | 7.5 | 3.2 1.9 |1/10

The values of the quantity B and of all the other quantities needed
for the derivation of the degenerate solutions (1.15), (1.17), and of
the solutions (2.9) and (2.10) are given in Table 1. The degenerate solu-
tions for very large A should be used when A > A,; the degenerate solu-
tions for very small A should be used when A < Ag; the solutions for
large A should be used when A > A°. Within these boundaries, the obtained
approximate solutions can be considered as being exact for all practical
purposes.

5. Examples (continuation). The approximate solutions of the problems
(a) and (b) for A° > A > Ao can be obtained by the method presented in
Section 3. The values of F(k) required for the application of this method
have been computed on the computing machine "Ural® and are given in
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Tables 2 and 3 for the problems (a) and (b), respectively. The tables
are constructed in such a manner that the intermediate values of the
function F(k) can be obtained by linear interpolation, correct to three
decimal places.

TABLE 2.
k F (k) k F (k) k F (&) k F &) k F (k)
1

000 —0.352 [0.75} ~0.096 ;150! 0.38¢ ;2.25| 0.798 |3.00{ 1.096
0.06| —0.350 | 0.80 ] --0.066 | 1.556{ 0.420 {2.30 | 0.821 [3.05] 1.113
0.10 | —0.346 | 0.85] —0.035 | 1,60 0.451 | 2.35] 0.844 {340 1.129
0.45] —0.340 | 0.90] —0.003 |1.65 ] 0.481 |2.40] 0.866 | 345 1.148
0.20 7 —0.331 10.9 0.029 | 1.70§ 0.510 | 2.45 | 0.887 | 3.20 | 1.i62
0.25 | —0.320 {1.00 0.062 | 1.75 | 0:540 | 2.50 | 0.908 | 3.25| 1.177
030} —0.306 {1.05 0.095 | 1.80] 0.568 |2.55] 0.920 }3.30} 1.193
0.35 | —0.280 | 1.10 0.128 | 1.85! 0.596 | 2.80{ 0.949 |3.35] 1.208
0.40} —0.272 | 1.15 0.162 | 1.80 | 0.623 |2.65 ] 0.968 |3.40} 1.223
0.45 1 —0.252 11.20 0.195 1 1.95] 0.650 | 2.70{ 0.988 | 3.45 1.238
0.50 | —0.229 |1.25 0.228 | 2,00 | 0.676 | 2.75 1.007 | 3.50 | 1.252
0.55 { —0.208 | 1.30 0.261 | 2.06] 0.702 | 2.80 | 1.025 From
0.60 | —0.180 | 1.35 0.293 {240 0.727 | 2.85} 1.043 here
0.65 ] —0.153 | 1.40 0.326 {2151 0.751 (2.90; 1.081 on as
0.70 ] —0.125 | 1.45 0.358 {2.20f 0.775 {2.9561 1.078 In k

The computations show that in order to obtain sufficiently exact solu~
tions for practical purposes, one must select the quantity i in Formuls
{3.1), in case of equal subdivisions of interpolation, in accordance
with the relation

i>E (14 -fj} 5.4)

The function E°(x) is equal to the intéger nearest to x. Let us conm-
sider, for example, the solution of the problems (a) and (b) for the
case when A = 1, §(x) = & + a(x) where we choose i = 3 in accordance with
(5.1) (in the given example for the finding of the approximntion (3.1)
use was made of the roots of the Chebychev polynomials ?5{&{2) for the
points of interpolstion on the interval {0,2}; a choice of equal sub-
divisions would have given a less exact result).

@ @)= 713——_:3 {—g— (1.913—0.9792% - 0.272* — 0.0822%) -

-+ oz (1.788 ~ 0.64922 - 0.194:::‘)] (5.2)



Approximate solution of a certain type of integral equations 1421

@ @)= ﬁi—“" [-g- (2.334 — 140022 -+ 0.4772% — 0.172%) -+

23

o (2163 — 1.12322 - 0.3sox4)] (3=0.3) (5.3)

One can easily prove that the solution (5.2) agrees quite well with
an analogous solution obtained in the works £1-4.6},

Computations made by the author showed that in the case of problem (b)
for equal depressions 5(x) and for arbitrary A, the pressure ¢(z) in-
creases with an increase of 0. Furthermore, it was shown that the pres-
sure under the stamp, in case of problem (b), is greater than in the
problem (a) under otherwise equal conditions and for arbitrary A. This

TABLE 3.
k F (k) k F (k) k F (k) k F (k) k F (k)

s=0.1
0.00 | —0.395 | 0.95 1 —0.107 | 1.50 0.401 2.25 0.805 3.00 1.097
0.05 | —0.394 | 0.80 | —0.074 | 1.55 0.433 2.30 0.828 3.05 1.114
0.10 | —0.389 | 0.85 | —0.040 | 1.60 0.463 2.35 0.850 3.10 1.130
0.15] --0.382 | 0.90 | —0.008 | 1.65 0.493 2.40 0.871 3.15 1.146
0.20{ —0.371 | 0.95 0.028 1 1.70 0.523 2.45 0.892 3.20 1.162
0.25 | —0.358 | 1.00 0.064 | 1.75 0.551 2.50 0.913 3.25 1.178
0.30 | —0.342 | 1.05 0.098 | 1.80 0.379 2.55 0.933 3.30 1.193
0.35 | —0.324 | 1.10 0.133 | 1.85 0.607 2.60 0.952 3.35 1.208
0.40 | —0.303 | 1.15 0.168 | 1.90 0.634 2.65 0.972 3.40 1.223
0.45{ —0.280 | 1.20 0.203 | 1.95 0.660 2,70 0.991 3.45 1.238
0.50 | -0.255 | 1.25 0.237 | 2.00 0.686 2.75 1.009 3.50 1.252
0.55 | —0.229 | 1.30 0.271 | 2.05 0.711 2.80 1.028 Fron
0.60 | —0.200 | 1.35 0.304 | 2.10 0.735 2.85 1.045 here
0.65 | —0.170 | 1.40 0.337 | 2.15 0.759 2.90 1.063 on as
0.70 | —0.139 | 1.45 0.370 | 2.20 0.782 2.95 1.080 In &

5=10.2
0.00 | —0.441 | 0.65 ] —0.201 | 1.30 0.262 ] 1.95 0.660 | 2.60 0.854
0.06 | —0.440 1 0.70 | —0.168 | 1.35 0.296 | 2.00 0.686 | 2.65 0.973
0.10 | —0.435 [ 0.75 | —0.134 | 1.40 0.330 | 2.05 0.711 | 2.70 0.992
0.15 | —0.427 | 0.80 | —0.099 | 1.45 0.364 | 2.10 0.736 | 2.75 1.010
0.20 | —0.416 | 0.85 ] —0.063 | 1.50 0.396 | 2.15 0.760 | 2.80 1.028
0.25 | —0.402 | 0.90 | —0.027 | 1.55 0.428 1 2.20 0.783 | 2.85 1.046
0.30 | —0.38%2 | 0.95 0.009 | 1.60 0.460 | 2.25 0.806 | 2.90 1.064
0.35 ] —0.365 | 1.00 0.046 | 1.65 0.490 | 2.30 0.829 | 2.95 1.081
0.40 | —0.343 | 1.05 0.082 | 1.70 0.520 | 2.35 0.851 {3.00 1.098
0.45 | —0.318 | 1.10 0.119 | 1.75 0.550 | 2.40 0.872 From
0.50 | —0.292 {1.15 0.155 | 1.80 0.578 | 2.45 0.893 here
0.55 | —0.263 { .20 0.191 | 1.85 0.606 1 2.50 0.914 on as
0.60 ] —0.233 {1.25 ¢.227 11.90 0.633 12,55 0.934 In &
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Approximate solution of a certain type of integral equations 1423

difference, however, does not exceed 10% when 0 < 0 < 0.2,

In conclusion, we note that with slight modification all the methods

given here can be applied to the solution of contact problems for elastic
layers (not necessarily axisymmetric).

The author thanks I.I. Vorovich for proposing the problem and for

directing the work, and also N.V. Kovalenko and V.G. Shepeleva for con-
structing the Tables 2 and 3.
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